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Abstract
Monte-Carlo Tree Search (MCTS) has been found
to show weaker play than minimax-based search in
some tactical game domains. In order to combine
the tactical strength of minimax and the strategic
strength of MCTS, MCTS-minimax hybrids have
been proposed in prior work. This article contin-
ues this line of research for the case where heuristic
state evaluation functions are available. Three differ-
ent approaches are considered, employing minimax
in the rollout phase of MCTS, as a replacement
for the rollout phase, and as a node prior to bias
move selection. The latter two approaches are newly
proposed. Results show that the use of enhanced
minimax for computing node priors results in the
strongest MCTS-minimax hybrid in the three test do-
mains of Othello, Breakthrough, and Catch the Lion.
This hybrid also outperforms enhanced minimax as
a standalone player in Breakthrough, demonstrating
that at least in this domain, MCTS and minimax can
be combined to an algorithm stronger than its parts.

1 Introduction
Monte-Carlo Tree Search (MCTS) [Coulom, 2007; Kocsis and
Szepesvári, 2006] is a best-first tree search algorithm based
on Monte-Carlo simulations for state evaluation. It has shown
considerable success in a variety of domains—see [Silver et
al., 2016] for the prominent recent example of Google Deep-
Mind’s AlphaGo, and [Browne et al., 2012] for an earlier liter-
ature survey. However, there are still a number of adversarial
domains such as the games of Chess and (International) Check-
ers in which the traditional approach to adversarial planning,
minimax search with αβ pruning [Knuth and Moore, 1975],
remains superior. Part of the reason could be the selectivity of
MCTS, its focusing on only the most promising lines of play.
In tactical games such as Chess, a large number of terminal
states and shallow traps exist in the search space [Ramanujan
et al., 2010a]. These require precise play to avoid immediate
loss, and the selective sampling and averaging value backups
of MCTS can easily miss or underestimate an important move.

∗This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Baier and Winands, in press].

Conversely, MCTS could be more effective in domains such
as Go, where terminal states and potential traps do not occur
until the latest stage of the game. Here, MCTS can fully play
out its strategic and positional understanding resulting from
Monte-Carlo simulations of entire games.

Note that the recent publication of AlphaZero [Silver et al.,
2017] points towards MCTS possibly becoming the dominant
approach even for Chess-like games. Deep reinforcement
learning seems to be able to produce state evaluators that avoid
traps surprisingly well on their own. Regardless of the state
evaluator however, MCTS is still more susceptible to traps
than alpha-beta, and deep neural networks may give a boost
to alpha-beta as well. While AlphaZero opens new questions,
this article could give an indication as to how the strengths of
MCTS and alpha-beta can be combined using any evaluation
function, hand-coded or learned.

In previous work [Baier and Winands, 2015], MCTS-
minimax hybrids have been introduced, embedding shallow
minimax searches into the MCTS framework. This was a first
step towards combining the strategic strength of MCTS with
the tactical strength of minimax. The results of the hybrid al-
gorithms MCTS-MR, MCTS-MS, and MCTS-MB have been
promising even without making use of domain knowledge
such as heuristic evaluation functions. However, their inabil-
ity to evaluate non-terminal states makes them ineffective in
games with very few or no terminal states throughout most of
the search space, such as the game of Othello. Furthermore,
some form of state evaluation is often available in practice—
as AlphaGo [Silver et al., 2016] demonstrated, deep learning
makes this possible even for domains where hand-crafting
evaluation functions has traditionally been considered very
difficult. This article therefore continues this line of research
by addressing the case where domain knowledge is available.

The algorithms discussed in this article make use of state
evaluations. These state evaluations can either be the result of
simple evaluation function calls, or the result of minimax
searches using the same evaluation function at the leaves.
Three different approaches for integrating state evaluations
into MCTS are considered. The first approach uses state eval-
uations to choose rollout moves (MCTS-IR for informed roll-
outs). The second approach uses state evaluations to terminate
rollouts early (MCTS-IC for informed cutoffs). The third ap-
proach uses state evaluations to bias the selection of moves in
the MCTS tree (MCTS-IP for informed priors). Using min-



imax with αβ to compute state evaluations means accepting
longer computation times in favor of typically more accurate
evaluations as compared to simple evaluation function calls.
Only in the case of MCTS-IR, minimax has been applied be-
fore [Ramanujan et al., 2010b]; the use of minimax for the
other two approaches is newly proposed in the form described
here. The MCTS-minimax hybrids are tested and compared to
their counterparts using evaluation functions without minimax
in the domains of Othello, Breakthrough, and Catch the Lion.

After the branching factor of a domain is identified as a lim-
iting factor of the hybrids’ performance, further experiments
are conducted using domain knowledge not only for state eval-
uation, but also for move ordering. Move ordering reduces the
average size of αβ trees, and furthermore allows to restrict the
effective branching factor of αβ to only the k most promising
moves in any given state (k-best pruning). Again, this has only
been done for MCTS with minimax rollouts before [Winands
et al., 2010]. The enhanced MCTS-minimax hybrids with
move ordering and k-best pruning are tested and compared to
the unenhanced hybrids as well as the equivalent algorithms
using static evaluations in all three domains. They are also
tested against each other to determine the relative strongest
hybrid, compared across domains, studied at different time
settings and different branching factors, combined with each
other, and finally compared to an αβ baseline.

2 Hybrid Algorithms
This section describes the three different approaches for em-
ploying heuristic knowledge within MCTS that we explore in
this article. For each approach, a variant using simple evalua-
tion function calls and a hybrid variant using shallow minimax
searches is considered. Two of the three hybrids are newly
proposed in the form described here.

2.1 MCTS with Informed Rollouts (MCTS-IR)
The convergence of MCTS to the optimal policy is guaranteed
even with uniformly random move choices in the rollouts.
However, more informed rollout policies can greatly improve
performance [Gelly et al., 2006], and preserve convergence if
they explore sufficiently. When a heuristic evaluation function
is available, it can be used in every rollout step to compare
the states each legal move would lead to, and choose the
most promising one. Instead of choosing this greedy move, it
is effective in some domains to choose a uniformly random
move with a low probability ε, so as to avoid determinism
and preserve diversity in the rollouts. Our implementation
additionally ensures non-deterministic behavior even for ε = 0
by picking moves with equal values at random both in the
selection and in the rollout phase of MCTS. The resulting
rollout policy is typically called ε-greedy [Sturtevant, 2008].
In the context of this work, we call this approach MCTS-IR-E
(MCTS with informed rollouts using an evaluation function).

The depth-one lookahead of an ε-greedy policy can be
extended in a natural way to a depth-d minimax search
for every rollout move [Winands and Björnsson, 2011;
Nijssen and Winands, 2012]. We use a random move ordering
in minimax as well in order to preserve non-determinism. In
contrast to [Winands and Björnsson, 2011] and [Nijssen and

Winands, 2012] where several enhancements such as move
ordering, k-best pruning, and killer moves were added to αβ,
we first test unenhanced αβ search in Subsection 3.1. We
are interested in its performance before introducing additional
improvements, especially since our test domains have smaller
branching factors than e.g. the games Lines of Action (around
30) or Chinese Checkers (around 25-30) used in [Winands and
Björnsson, 2011] and [Nijssen and Winands, 2012], respec-
tively. Move ordering and k-best pruning are then added in
Subsection 3.2. Using a depth-dminimax search for every roll-
out move aims at stronger move choices in the rollouts, which
make rollout returns more accurate and can therefore help to
guide the growth of the MCTS tree. We call this approach
MCTS-IR-M (MCTS with informed rollouts using minimax).

2.2 MCTS with Informed Cutoffs (MCTS-IC)
The idea of rollout cutoffs is an early termination of the rollout
in case the rollout winner, or the player who is at an advantage,
can be reasonably well predicted with the help of an evaluation
function. The statistical noise introduced by further rollout
moves can then be avoided by stopping the rollout, evaluating
the current state of the simulation, and backpropagating the
evaluation result instead of the result of a full rollout to the
end of the game [Lorentz, 2008; Winands et al., 2010]. If on
average, the evaluation function is computationally cheaper
than playing out the rest of the rollout, this method can also
result in an increased sampling speed as measured in rollouts
per second. A fixed number m of rollout moves can be played
before evaluating in order to introduce more non-determinism
and get more diverse rollout returns. If m = 0, the evaluation
function is called directly at the newly expanded node of
the tree. As in MCTS-IR, our MCTS-IC implementation
avoids deterministic gameplay through randomly choosing
among equally valued moves in the selection policy. We scale
all evaluation values to [0, 1]. In the following, we call this
approach MCTS-IC-E (MCTS with informed cutoffs using an
evaluation function).

We propose an extension of this method using a depth-d
minimax search at cutoff time in order to determine the value
to be backpropagated. In contrast to the integrated approach
taken in [Winands and Björnsson, 2011], we do not assume
MCTS-IR-M as rollout policy and backpropagate a win or
a loss whenever the searches of this policy return a value
above or below two given thresholds. Instead, we play rollout
moves with an arbitrary policy (uniformly random unless spec-
ified otherwise), call minimax when a fixed number of rollout
moves has been reached, and backpropagate the heuristic value
returned by this search. Like MCTS-IR-M, this strategy tries
to backpropagate more accurate rollout returns, but by com-
puting them directly instead of playing out the rollout. We
call this approach MCTS-IC-M (MCTS with informed cutoffs
using minimax).

2.3 MCTS with Informed Priors (MCTS-IP)
Node priors [Gelly and Silver, 2007] represent one method
for supporting the selection policy of MCTS with heuristic
information. When a new node is added to the tree, or after
it has been visited n times, the heuristic evaluation h of the
corresponding state is stored in this node. This is done in the



form of virtual wins and virtual losses, weighted by a prior
weight parameter γ. The following formulas show how to
update the win (w) and visit (v) counters of the node at hand.

v ←− v + γ (1a)
w ←− w + γh (1b)

We assume h ∈ [0, 1]. If the evaluation value h is 0.6 and
the weight γ is 100, for example, 60 wins and 100 visits are
added to the node at hand. This is equivalent to 60 virtual wins
and 100− 60 = 40 virtual losses. Since heuristic evaluations
are typically more reliable than the MCTS value estimates
resulting from only a few samples, this prior helps to guide
tree growth into a promising direction. If the node is visited
frequently however, the influence of the prior progressively
decreases over time, as the virtual rollout returns represent
a smaller and smaller percentage of the total rollout returns
stored in the node. Thus, MCTS rollouts progressively over-
ride the heuristic evaluation. We call this approach MCTS-IP-E
(MCTS with informed priors using an evaluation function) in
this article.

We propose to extend MCTS-IP with a depth-d minimax
search in order to compute the prior value to be stored. This
approach aims at guiding the selection policy through more
accurate prior information in the nodes of the MCTS tree. We
call this approach MCTS-IP-M (MCTS with informed priors
using minimax).

3 Experimental Results
We tested the algorithms in three different domains: Othello,
Catch the Lion, and 6×6 Breakthrough. These are all deter-
ministic perfect-information turn-taking zero-sum games. As
baseline algorithm for comparison, we usedMCTS−Solver,
an MCTS variant that is able to handle proven game-theoretic
values [Winands et al., 2008].

We first briefly summarize the main takeaways of our experi-
mental results for MCTS-IR-E, MCTS-IC-E, and MCTS-IP-E,
as well as MCTS-IR-M, MCTS-IC-M, and MCTS-IP-M using
unenhanced αβ. After identifying the branching factor of a
domain as an important limiting factor for algorithm perfor-
mance, we then provide the main findings of our improved
results for MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-
k using αβ with move ordering and k-best pruning. Please
refer to the full article for detailed results, and for a description
of the heuristic board evaluation functions used in the three
test domains.

3.1 Results with Unenhanced αβ
In all experimental conditions, we compared the hybrids (end-
ing -M) as well as their counterparts using heuristics without
minimax (ending -E) against regular MCTS-Solver as the base-
line. Rollouts were uniformly random except for MCTS-IR.
Optimal MCTS parameters such as the exploration factor C
were determined once for MCTS-Solver in each game and
then kept constant for both MCTS-Solver and the MCTS-
minimax hybrids during testing. Draws, which are possible in
Othello, were counted as half a win for both players. We used
minimax with αβ pruning, but no other search enhancements.
Computation time was 1 second per move.

Main Findings
• MCTS-IR-E works well in all three domains. However,

MCTS-IR-M does not improve on it in any domain. The
reason is the high computational cost of calling minimax
many times in each MCTS simulation.

• MCTS-IC-E works well in all domains but Breakthrough
(the evaluation function we used in Breakthrough may not
be accurate enough for MCTS to fully rely on it instead
of rollouts). However, MCTS-IC-M does not improve on
MCTS-IC-E in any domain, the reason again being the high
computational cost of calling minimax even just once in
every MCTS simulation.

• MCTS-IP-E works well in all domains. MCTS-IP-M im-
proves on it in all domains but Breakthrough. The reason
is probably that the parameters of MCTS-IP make it easier
to control the computational cost, but the branching factor
of Breakthrough (15.5 compared to 10.5 in Catch the Lion
and 8 in Othello) is still causing problems.

• In conclusion, MCTS-IP-M seems to be a promising hy-
brid, but the sensitivity to the branching factor of the given
domain is a problem for the hybrids in general.

3.2 Results with Move Ordering and k-best
Pruning

In Subsection 3.1, αβ search was used in its basic, unenhanced
form. This was sufficient to improve MCTS-IP in Othello
and Catch the Lion, but too computationally expensive for
MCTS-IR and MCTS-IC in these two domains, as well as
for all hybrids in Breakthrough. The performance difference
between the hybrids can be explained by the fact that MCTS-
IP allows to control the frequency of minimax calls with the
parameter n, while MCTS-IC needs to call minimax once in
every simulation, and MCTS-IR even for every single simu-
lation move. This makes it easier for MCTS-IP to trade off
the computational cost of embedded minimax searches against
their advantages over static evaluation function calls. The
performance difference between the domains can be explained
by the larger branching factor of Breakthrough compared to
Othello and Catch the Lion, which affects full-width minimax
more strongly than for example the sampling-based MCTS.
The main problem of MCTS-minimax hybrids seems to be
their sensitivity to the branching factor of the domain.

We therefore conduct further experiments applying limited
domain knowledge not only for state evaluation, but also for
move ordering. The application of move ordering is known to
strongly improve the performance of αβ through a reduction
of the average size of the search tree [Knuth and Moore, 1975].
Additionally, with a good move ordering heuristic one can
restrict αβ to only searching the k moves in each state that
seem most promising to the heuristic (k-best pruning). The
number of promising moves k is subject to empirical opti-
mization. Move ordering and k-best pruning could make all
MCTS-minimax hybrids viable in domains with much higher
branching factors, including the newly proposed MCTS-IC-M
and MCTS-IP-M. We call the hybrids with activated move
ordering and k-best pruning enhanced hybrids or MCTS-IR-
M-k, MCTS-IC-M-k, and MCTS-IP-M-k, respectively. Please
refer to the full article for detailed results, for a description of



the move ordering functions used, and for an analysis of their
effectiveness at reducing effective branching factors.

Main Findings
• MCTS-IR-M-k improves on MCTS-IR-E in all three do-

mains. However, its strength comes from move ordering
and k-best pruning alone, not from embedded minimax
searches: The optimal minimax search depth is the minimal
depth of 1.

• MCTS-IC-M-k improves on MCTS-IC-E in Othello and
Breakthrough. However, its strength again comes from
move ordering and k-best pruning, not from minimax – the
optimal search depth for minimax is 1 here, too.

• MCTS-IP-M-k improves on MCTS-IP-E (and MCTS-IP-M)
in all three domains, and truly profits from the embedded
minimax searches (optimal minimax depths are larger than
1 in all test domains). It is significantly stronger than the
best player found with unenhanced αβ in all domains, and
stronger than all other hybrids tested.

• A comparison of domains shows that all hybrids are most
successful in Catch the Lion, probably due to the higher
number of shallow hard traps in this Chess-like domain.

• MCTS-IP-M-k works well at all tested time settings from
250 ms per move to 5 s per move, but can overfit to the time
settings it was tuned for.

• MCTS-IP-M-k and MCTS-IC-M-k, the hybrids proposed
in this article, become considerably more effective as we
increase the branching factor in Breakthrough by enlarging
the board from 6×6 to 18×6. MCTS-IR-M-k cannot handle
larger branching factors this well due to the much higher
number of minimax calls.

• It is potentially useful to combine different ways of using
identical domain knowledge in MCTS-minimax hybrids.
MCTS-IP-M-k for example profits from the combination
with MCTS-IR-M-k in Breakthrough and Catch the Lion.

• The combination of MCTS-IP-M-k and MCTS-IR-M-k out-
performs both its MCTS part and its αβ part in Break-
through, demonstrating a successful combination of the
advantages of the two search approaches. In Catch the Lion
and Othello however, regular αβ is still stronger than the
best MCTS hybrids found for each domain.

• In conclusion, MCTS-IP-M-k is the strongest standalone
MCTS-minimax hybrid investigated in all three tested do-
mains. The use of enhanced minimax for computing node
priors is therefore a promising new technique for integrating
domain knowledge into an MCTS framework.

4 Conclusion and Future Research
In this article, we continued the research on MCTS-minimax
hybrids for the case where domain knowledge in the form of
heuristic evaluation functions is available. Three approaches
for integrating such knowledge into MCTS were considered.
MCTS-IR uses heuristic knowledge to improve the rollout pol-
icy. MCTS-IC uses heuristic knowledge to terminate rollouts
early. MCTS-IP uses heuristic knowledge as prior for tree

nodes. For all three approaches, we compared the computa-
tion of state evaluations through simple evaluation function
calls (MCTS-IR-E, MCTS-IC-E, and MCTS-IP-E) to the com-
putation of state evaluations through shallow-depth minimax
searches using the same heuristic knowledge (MCTS-IR-M,
MCTS-IC-M, and MCTS-IP-M).

Experiments with unenhanced αβ in the domains of Othello,
Breakthrough and Catch the Lion showed that the embedded
minimax searches improve MCTS-IP in Othello and Catch
the Lion, but are too computationally expensive for MCTS-IR
and MCTS-IC in these two domains, as well as for all hybrids
in Breakthrough. The main problem of MCTS-minimax hy-
brids with unenhanced αβ seems to be the sensitivity to the
branching factor of the domain at hand.

Further experiments introduced move ordering and k-best
pruning to the hybrids in order to cope with this problem,
resulting in the enhanced hybrid players called MCTS-IR-
M-k, MCTS-IC-M-k, and MCTS-IP-M-k. Results showed
that with these simple enhancements, MCTS-IP-M-k is the
strongest standalone MCTS-minimax hybrid investigated in
this article in all three tested domains. Because it does not have
to call minimax in every rollout or even in every rollout move,
it performs better than the other hybrids at low time settings
when performance is most sensitive to a reduction in rollouts.
It was also shown to work well at higher branching factors.
Additionally, it was shown that the combination of MCTS-IP-
M-k with minimax rollouts can lead to further improvements
in Breakthrough and Catch the Lion. Moreover, the best-
performing hybrid outperformed a simple αβ implementation
in Breakthrough, demonstrating that at least in this domain,
MCTS and minimax can be combined to an algorithm stronger
than its parts. MCTS-IP-M-k, the use of enhanced minimax for
computing node priors, is therefore a promising new technique
for integrating domain knowledge into an MCTS framework.

A first direction for future research is the application of
additional αβ enhancements. As a simple static move order-
ing has proven quite effective in all domains, one could for
example experiment with dynamic move ordering techniques
such as killer moves or the history heuristic.

Second, some combinations of the hybrids play at a higher
level than the hybrids in isolation, despite using the same
heuristic knowledge. This may mean we have not yet found
a way to fully and optimally exploit this knowledge, which
should be investigated further.

Third, differences between test domains such as their den-
sity of terminal states, their density of hard and soft traps, or
their progression property [Finnsson and Björnsson, 2011]
could be studied in order to better understand the behavior of
MCTS-minimax hybrids with heuristic evaluation functions,
and how they compare to standalone MCTS and minimax.

Finally, recent work on AlphaZero [Silver et al., 2017] has
demonstrated the impressive success of using deep reinforce-
ment learning to train a neural network which encodes domain
knowledge. This network was then used within MCTS both
for biasing the selection policy as well as for replacing the
rollout policy with a state evaluation. It remains an interesting
line of future work to see if powerful function approximators
such as deep neural networks can also be even more effectively
used in hybrid search algorithms such as those proposed here.
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